Building Bridges Between Environmental Science and Business Operations
WMO Science Summit, 2017

Amith Singhee
Senior Technical Staff Member
Manager, Environmental Analytics and Cognitive Operations
IBM Research, India
The Environment Impacts Many “Businesses”

Environmental Science: weather forecasts, observations, remote sensing, etc.

- Difficult for business stakeholders to directly quantify and predict impacts, and take precise decisions.
 - Stakeholders: storm director, farmer, city administrator, building manager, etc.

- How can we bridge this gap?
Storm Impacts on Power Distribution Grid: What was the Gap?

- Difficult for a business user, or even meteorologist to quantify 1-2 days ahead of time:
 - How many damages and outages should I expect in each service region?
 - How will those damages be distributed over time?
 - How much work effort will be have to be spent in each service region?
 - How may resources of different types should I stage in each service center?
 - Should I ask for mutual aid, if so how many, when and for how long?
Bridging the Gap With Coupled Models: Basic Flow

Weather Model
Physics based and statistical

Damage Model
Machine Learning Model

Pre-Positioner
Optimization Model

High Precision Weather Prediction

Damage/Outage Prediction

Pre-Planning (~3 days lead)

Wind Gusts, Snow, ...

Expected Damage Locations & Timing

Resource Mobilization

Restoration Response Scenarios
Customized Weather Model

- **Regional domain, nested grid customized to target business needs.**
- **Calibrated to best match historical weather events relevant to the business.**
Damage Forecasting Model

- Predict spatial and temporal distribution of weather-driven damages

- Damage behavior influenced by many factors:
 - Weather: wind gust speed, direction, precipitation, temperature, etc.
 - Vegetation relative to infrastructure
 - Infrastructure characteristics: underground/overhead, age, type
 - Soil conditions
 - Electrical operating conditions

- Challenges overcome:
 - Data sparsity
 - Variety of weather: thunderstorm, heat wave, clear sky, ice storm, etc.
 - Noise for low damage/clear sky

Damage Model

- Machine learning model

Input
- High precision weather prediction (gust, rainfall, temp., etc.)

Training Input
- Historical damage data
- Weather hindcasts/observations
- Substation area polygons
- Damage categorization

Output
- Probability distribution of damages
- Per day/shift
- Per damage type
- Per substation area
Impact Metrics Understandable by the Business: Damage Forecast
Storm Impact Summary Dashboard

Medium Storm
Jan 15th, 7:00 PM - Jan 16th, 7:00 PM
41807 Customers Affected
3698 Jobs

Damage Prediction

Weather

<table>
<thead>
<tr>
<th>DateTime</th>
<th>01/15 AFT</th>
<th>01/16 EVE</th>
<th>01/16 DAY</th>
<th>01/17 AFT</th>
<th>01/17 EVE</th>
<th>01/17 DAY</th>
<th>01/18 AFT</th>
<th>01/18 EVE</th>
<th>01/18 DAY</th>
<th>01/18 AFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation (in inch)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td>0.05</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Temp Max (in Fahrenheit)</td>
<td>32.33°</td>
<td>31.39°</td>
<td>23.63°</td>
<td>19.79°</td>
<td>20.58°</td>
<td>39.64°</td>
<td>39.95°</td>
<td>37.73°</td>
<td>34.69°</td>
<td>32.97°</td>
</tr>
<tr>
<td>Temp Min (in Fahrenheit)</td>
<td>13.81°</td>
<td>4.36°</td>
<td>5.10°</td>
<td>-5.60°</td>
<td>-2.70°</td>
<td>11.70°</td>
<td>33.24°</td>
<td>23.28°</td>
<td>24.02°</td>
<td>25.62°</td>
</tr>
<tr>
<td>Gust (in miles/hour)</td>
<td>43.96</td>
<td>37.47</td>
<td>32.82</td>
<td>33.94</td>
<td>41.66</td>
<td>45.86</td>
<td>49.11</td>
<td>40.22</td>
<td>36.46</td>
<td>31.02</td>
</tr>
</tbody>
</table>
Difficult for growers to answer “business” questions precisely and easily:

- How many liters of water should I input this week?
- Should I spray some pesticide? If yes, which?
- Is one farm lagging behind others in health? Why?
Stepping Back: What Do These Bridge All Look Like?

Data
1. Co-curate: Remote sensed, locally sensed, forecast, static
2. Big data, query-able

People/orgs
1. Joint projects – cross-disciplinary team
2. Industry track workshops
3. Private – public – academic – NGO

Knowledge
1. Just “what is available”? 2. Needs in the target domain: e.g. wind gust for damages 3. Geo-specific needs

Science/models
1. Model customization
2. Models in the Cloud – converged infrastructure with downstream applications
3. Coupled models (numerical, machine learning, optimization, domain-specific)
1. Engage with industries across geographies for local relevance and global scalability.
2. Bring comprehensive skills and roles together to translate all the way from idea to production.